APPLIED MATHEMATICS

Title of Study Programme and Code	Type (compulsory/optional)	Cycle	Year of study when the component is delivered (if applicable)
Transport Business 6531LX074	Compulsory	1 st	1 st year
Semester/trimester when the component is delivered	Number of ECTS credits allocated	Language of instruction	Mode of delivery (face-to-face/e- learning/)
1 st	6 ECTS	English	
Learning outcomes		Study methods	Assessment methods
After completion of the study subject, a student should be able:		Interpretation of concepts;	Test No.1; Test No.2; Defence of the individual homework; Exam.
LO 1 To describe simpl by functions, anal functions.	To describe simple economic situations by functions, analyse properties of functions.		
LO 2 To apply linear eq inequalities and t and describing ma economic process	2 To apply linear equations, linear inequalities and their systems by defining and describing mathematically simple economic processes.		
LO 3 To apply linear alg simulation examp specialty subjects	D 3 To apply linear algebra methods, solving simulation examples, described in specialty subjects.		
LO 4 To create a mathematical model of the experiment and calculate the probabilities of events.			
.O 5 To create a mathematical model for linear programming task in the field of transport and solve it graphically.			
LO 6 To predict and sel transport routes b programming me	6 To predict and select the most efficient transport routes by using linear programming methods.		
LO 7 To optimize the p maximize average	7 To optimize the production plan and maximize average production costs.		
LO 8 To apply correlati specifying "streng magnitudes relati	3 To apply correlation theory elements, specifying "strength" of random magnitudes relation.		
LO 9 To perform correct and interpret the	To perform correctly statistical analysis and interpret the results.		
LO 10 To perform simple calculations in fin	e mathematical ance economy. Prerequisi	tes	

(these courses must be sucessfully completed prior to taking this particular course)

Course content

- 1. Fundamentals of Business Mathematics.
- 2. Set theory and functions. Function limit.
- 3. Differential and integral calculation.
- 4. Linear algebra.
- 5. Linear inequalities and systems. Linear programming.
- 6. Probability theory.
- 7. Mathematical statistics.

Recommended or required reading and other learning resources/tools

1. J. Olivier (2018). Business Math. A Step-by-Step Handbook: <u>http://solr.bccampus.ca:</u> <u>8001/bcc/file/16301119-8ec4-4241-b0f7-cc87ffc942d6/1/Olivier%20Business%20Math%20</u> <u>Basic%202018%20Revision%20A%20Entire%20Textbook.pdf</u>

2. M. J. Alhabeeb (2012). Mathematical Finance. John Wiley & Sons, Inc: <u>https://onlinelibrary.</u> wiley.com/doi/book/10.1002/9781118106907

3. K. Matthews (1991). Elementary Linear Algebra. Lecture notes:

http://www.numbertheory.org/ book/

4. Calculus Volume 1: https://openstax.org/books/calculus-volume-1/pages/preface